1 stepped pressure equilibrium code: ph00aa

Contents

1	stepped pressure equilibrium code : ph00aa	1
	1.1 outline	1
	1.1.1 Pressure jump Hamiltonian	1

1.1 outline

1. Pressure-jump Hamiltonian o.d.e.'s, and tangent map,

1.1.1 Pressure jump Hamiltonian

2. The pressure-jump Hamiltonian is derived from the force-balance condition at the ideal interfaces. Let p_1 and \mathbf{B}_1 be the pressure and field immediately inside the interface, and p_1 and \mathbf{B}_1 be the pressure and field immediately outside, then the force balance condition requires that

$$H \equiv 2\,\delta p = 2(p_1 - p_2) = B_2^2 - B_1^2 \tag{1}$$

For Beltrami fields, which satisfy $\nabla \times \mathbf{B} = \mu \mathbf{B}$, the magnitude of the field, B, on the interface (where we assume that $B^s = 0$) may be written

$$B^{2} = \frac{g_{\phi\phi}f_{\theta}f_{\theta} - 2g_{\theta\phi}f_{\theta}f_{\phi} + g_{\theta\theta}f_{\phi}f_{\phi}}{g_{\theta\theta}g_{\phi\phi} - g_{\theta\phi}g_{\theta\phi}} \tag{2}$$

where f is a surface potential and $g_{\theta\theta}$, $g_{\theta\phi}$ and $g_{\phi\phi}$ are metric elements local to the interface.

- 3. Assuming that the field B_1 is known on the 'inside' of the interface, ie. $B_{1\theta} = f_{\theta}$, $B_{1\phi} = f_{\phi}$ and f is known, it is required to determine the tangential field, $p_{\theta} = B_{\theta}$ and $p_{\phi} = B_{\phi}$, on the 'outside' of the interface.
- 4. The o.d.e.'s are given by Hamilton's equations

$$\dot{\theta} = \frac{\partial H}{\partial p_{\theta}} \Big|_{\theta, \phi, p_{\phi}}, \quad \dot{p}_{\theta} = -\frac{\partial H}{\partial \theta} \Big|_{p_{\theta}, \phi, p_{\phi}}, \quad \dot{\phi} = \frac{\partial H}{\partial p_{\phi}} \Big|_{\theta, p_{\theta}, \phi}, \quad \dot{p}_{\phi} = -\frac{\partial H}{\partial \phi} \Big|_{\theta, p_{\theta}, p_{\phi}}, \tag{3}$$

where the 'dot' denotes derivative with respect to 'time'.

5. This is reduced to a $1\frac{1}{2}$ dimensional system by using ϕ as the time-like integration parameter, and replacing the equation for \dot{p}_{ϕ} with

$$p_{\phi} = P(\theta, p_{\theta}, \phi; \delta p) = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \tag{4}$$

where $a = g_{\theta\theta}$, $b = -2g_{\theta\phi}p_{\theta}$ and $c = g_{\phi\phi}p_{\theta}^2 - b_1 - 2\delta pG$ (see below for definition of b_1 and G).

6. The o.d.e.'s that then need to be followed are (see below for definition of A and b_2)

$$\frac{d\theta}{d\phi} = \frac{g_{\phi\phi}p_{\theta} - g_{\theta\phi}p_{\phi}}{-g_{\theta\phi}p_{\theta} + g_{\theta\theta}p_{\phi}},\tag{5}$$

$$\frac{dp_{\theta}}{d\phi} = \frac{g_{\phi\phi,\theta}(f_{\theta}^2 - p_{\theta}^2) - 2g_{\theta\phi,\theta}(f_{\theta}f_{\phi} - p_{\theta}p_{\phi}) + g_{\theta\theta,\theta}(f_{\phi}^2 - p_{\phi}^2) + A + (b_2 - b_1)G_{,\theta}/G}{-2g_{\theta\phi}p_{\theta} + g_{\theta\theta}2p_{\phi}}.$$
 (6)

- 7. Note that $d\theta/d\phi = B^{\theta}/B^{\phi}$; there is a fundamental relation between the pressure-jump Hamiltonian and the field-line Hamiltonian. (Furthermore, in many cases the surface will be given in straight field line coordinates, so $d\theta/d\phi = const.$.)
- 8. The conserved 'energy' δp is given by the jump in pressure across the interface.

9. Some description of the internal notation follows :

$$G = g_{\theta\theta}g_{\phi\phi} - g_{\theta\phi}g_{\theta\phi},\tag{7}$$

$$A = g_{\phi\phi} 2f_{\theta} f_{\theta\theta} - 2g_{\theta\phi} (f_{\theta\theta} f_{\phi} + f_{\theta} f_{\phi\theta}) + g_{\theta\theta} 2f_{\phi} f_{\phi\theta}, \tag{8}$$

$$b_1 = g_{\phi\phi} f_{\theta}^2 - 2g_{\theta\phi} f_{\theta} f_{\phi} + g_{\theta\theta} f_{\phi}^2, \tag{9}$$

$$b_2 = g_{\phi\phi}p_\theta^2 - 2g_{\theta\phi}p_\theta p_\phi + g_{\theta\theta}p_\phi^2,\tag{10}$$

ph00aa.h last modified on 2012-12-18;